First reflections after Studio A session

This post merely sums up some of the thoughts rotating in my head right after this session in May 2017, and then again some more reflections that occured during the mixing process together with Andrew Munsie (in June). Some of the tracks are not yet mixed, and these have been sent to Gary Bromham, so we can get some reflections from him too during his mixing process.

For this session I had made a set of mappings for each duo configuration, trying to guess what would be interesting. I had made mappings that would be relatively rich and organic, some being more obvious and large-gesture, other being more nuanced and small-scale modulations. The intent was to create instruments that could be used for a longer time stretch without getting “worn out”. The mappings contained 4 to 8 features from each instrument, mapped to modulate 3 to 7 effects parameters on the other instrument. This going on in both directions (one musician modulating the other and vice versa), it sums up to a pretty complex interaction scenario. There is nothing magic about these numbers (number of features and modulators), it just happened to be the amount of modulation mappings I could conceptualize as reasonable combinations. The number of modulations (effect parameter destinations) is slightly less than the number of features becaause I would oftentimes combine several features (add, gate, etc) for each modulator. Still, I would also re-use some features for several modulators, so the number of features just slightly higher than the modulators.

Right after the session:

Reflection on things that could have been done differently: I think that it might perhaps have been better to use simpler parameter mappings, to get something that would be very obvious and clear, very distinctly gestural. This would perhaps have been easier for the musicians to relate intuitively to. Subtle and complex mappings are nice, but may just create a mushy din. Since they will be partly “hidden” to the musicians (due to subtlety of mapping, and also the signal balance during performance), they will not be finely controlled. Thus, to some extent, they will be randomly related to the performative gestures. Complexity adds noise too (on could say), both for performer and for listeners of the music. Selection of effects is also just as important as the parameter mappings. Try to make something that is more gesturally responsive. One specific element that was problematic was the delay time change without pitch modification. Perhaps this is not so great. Not easy to control for the performer, and not easy perceived (by the other performer, or for an external listener) either. Related to the liveconvolver takes, I realize that the convolver effect is not so much gestural, but more a block-wise imposition of one sound on another. (Obvious enough when one think about it, but still worth mentioning).

Reflections during mixing:

We hear rich interactions, the subtle nuances work well (contrary to reflections right after the session). One does not really have to decode or intellectualize the mapping, just go with the flow, listen. Sometimes I listen for a specific modulation and totally loose the context and musical meaning. Still, in the mixing process, this is natural and necessary.
The comments of Kyle and Steven that they “would play the same anyway” comes in a different light now, as it is hard to imagine you would not change the performance in response to the processing. The instruments and the processing constitutes a whole, perhaps more easily perceived as a whole now in hindsight, but this may very well relate to listening habit. Getting to know this musical situation better will make the whole easier to perceive during performance. Still, the musicians would to some extent not expressively utilize the potential of the complex mappings. This is partly because they did not know exactly the details, …perhaps I got exactly what I set it up to do: not telling the mapppings and making them “rich”.

Session in UCSD Studio A

This session was done May 11th in Studio A at UCSD. I wanted to record some of the performer constellations I had worked with in San Diego during Fall 2016 / Spring 2017. Even though I had worked with all these performers in different constellations, some new combinations were tested this day. The approach was to explore fairly complex feature-modulator mappings. No particular focus was made on intellectualizing the details of these mappings, but rather experiencing them as a whole, “as instrument”. I had found that simple mappings, although easy to decode and understand for both performer and listener, quickly would “wear out” and become flat, boring or plainly limiting for musical development during the piece. I attempted to create some “rich” mappings, with combinations of different levels of subtlety. Some clearly audible and some subtle timbral effects. The mappings were designed with some specific musical gestures and interactions in mind, and these are listed together with the mapping details for each constellation later in this post.

During this session, we also explored the live convolver in terms of how the audio content in the IR affects the resulting creative options and performative environment for the musician playing through the effect. The liveconvolver takes are presented interspersed with the crossadaptive “feature-modulator” (one could say “proper crossadaptive”) takes. Recording of the impulse response for the convolution was triggered via an external pedal controller during performance, and we let each musician in turn have the role of IR recorder.

Participants:
Jordan Morton: double bass and voice
Miller Puckette: guitar
Steven Leffue: sax
Kyle Motl: double bass
Oeyvind Brandtsegg: crossadaptive mapping design, processing
Andrew Munsie: recording engineer

The music played was mostly free improvisations, but two of the takes with Jordan Morton was performances of her compositions. These were composed in dialogue with the system, during and in between, earlier sessions. She both plays the bass and sings, and wanted to explore how phrasing and shaping of precomposed material could be used to expressively control the timbral modulations of the effects processing.

Jordan Morton: bass and voice.

These pieces are composed by Jordan, and she has composed it with an intention of being performed freely, and shaped according to the situation at performance time, allowing the crossaptive modulations ample room for influence on the sound.


“I confess” (Jordan Morton). Bass and voice.


“Backbeat thing” (Jordan Morton). Bass and voice.

The effects used:
Effects on vocals: Delay, Resonant distorted lowpass
Effects on bass: Reverb, Granular tremolo

The features and the modulator mappings:
(also stating an intended purpose for each mapping)

  • Bass spectral flatness, and
  • Bass spectral flux: both features giving lesser reverb time on bass

Purpose: When the bass becomes more noisy, it will get less reverb

  • Vocal envelope dynamics (dynamic range), and
  • Vocal transient density: both features giving lower lowpass filter cutoff frequency on reverb on bass

Purpose: When the vocal becomes more active, the bass reverb will be less pronounced

  • Bass transient density: higher cutoff frequency (resonant distorted lowpass filter) on vocal

Purpose: to animate a distorted lo-fi effect on the vocals, according to the activity level on bass

  • Vocal mfcc-diff (formant strength, “pressed-ness”): Send level for granular tremolo on bass

Purpose: add animation and drama to the bass when the vocal becomes more energetic

  • Bass transient density: lower lowpass filter frequency for the delay on vocal

Purpose: clean up vocal delays when basse becomes more active

  • Vocal transient density: shorter delay time for the delay on vocal
  • Bass spectral flux: longer delay time for the delay on vocal

Purpose: just for animation/variation

  • Vocal dynamic range, and
  • Vocal transient density: both features giving less feedback for the delay on vocal

Purpose: clean up vocal delay for better articulation on text

Liveconvolver tracks Jordan/Jordan:

The tracks are improvisations. Here, Jordan’s voice was recorded as the impulse response and she played bass through the voice IR. Since she plays both instruments, this provides a unique approach to the live convolution performance situation.


Liveconvolver take 1: Jordan Morton bass and voice


Liveconvolver take 2: Jordan Morton bass and voice

Jordan Morton and Miller Puckette

Liveconvolver tracks Jordan/Miller:

These tracks was improvised by Jordan Morton (bass) and Miller Puckette (guitar). Each of the musicians was given the role of “impulse response recorder” in turn, while the other then played through the convolver effect.


Improvised liveconvolver performance, Jordan Morton (bass) and Miller Puckette (guitar). Miller records the IR.


Improvised liveconvolver performance, Jordan Morton (bass) and Miller Puckette (guitar). Jordan records the IR.

Discussion on the performance with live convolution, with Jordan Morton and  Miller Puckette.

Miller Puckette and Steven Leffue

These tracks was improvised by Miller Puckette (guitar) and Steven Leffue. The feature-modulator mapping was designed to enable a rich interaction scenario for the performers to explore in their improvisation. The musicians were given only a very brief introduction to the specifities of the mapping before the first take. The intention of this strategy was to create an naturally flowing environment of exploration, with not-too-obvious relationships between instrumental gestures and resulting modulations. After the first take, some more detail of selected elements (one for each musician) of the mapping were repeated for the performers, with the anticipation that these features might be explored more consciously.

Take 1:


Crossadaptive improvisation with Miller Puckette (guitar) and Steven Leffue (sax). Take 1.  Details of the feature-modulator mapping is given below.

Discussion 1 on the crossadaptive performance, with Miller Puckette and Steven Leffue. On the relationship between what you play and how that modulates the effects, on balance of monitoring, and other issues.

The effects used:
Effects on guitar: Spectral delay
Effects on sax: Resonant distorted lowpass, Spectral shift, Reverb

The features and the modulator mappings:
(also stating an intended purpose for each mapping)

  • Guitar envelope crest: longer reverb time on sax

Purpose: dynamic guitar playing will make a big room for the sax

  • Guitar transient density: higher cutoff frequency for reverb highpass filter and lower cutoff frequency for reverb lowpass filter

Purpose: when guitar is more active, the reverb on sax will be less full (less highs and less lows)

  • Guitar transient density (again): downward spectral shift on sax

Purpose: animation and variation

  • Guitar spectral flux: higher cutoff frequency (resonant distorted lowpass filter) on sax

Purpose: just for animation and variation. Note that spectral flux (especially on the guitar) will also give high values on single notes in the low register (the lowest octave), in addition to the expected behaviour of giving higher values on more noisy sounds.

  • Sax envelope crest: less delay send on guitar

Purpose: more dynamic sax playing will “dry up” the guitar delays, must play long notes to open the sending of guitar to delay

  • Sax transient density: longer delay time on guitar. This modulation mapping was also gated by the rms amplitude of the sax (so that it is only active when sax gets loud)

Purpose: load and fast sax will give more distinct repetitions (further apart) on the guitar delay

  • Sax pitch: increase spectral delay shaping of the guitar (spectral delay with different delay times for each spectral band)

Purpose: more unnatural (crazier) effect on guitar when sax goes high

  • Sax spectral flux: more feedback on guitar delay

Purpose: noisy sax playing will give more distinct repetitions (more repetitions) on the guitar delay

Take 2:


Crossadaptive improvisation with Miller Puckette (guitar) and Steven Leffue (sax). Take 2. The feature-modulator mapping was the same as for take 1.

Discussion 2 on the crossadaptive performance, with Miller Puckette and Steven Leffue. Instructions and intellectualizing the mapping made it harder

Liveconvolver tracks:

Each of the musicians was given the role of “impulse response recorder” in turn, while the other then played through the convolver effect.


Improvised liveconvolver performance, Miller Puckette (guitar) and Steven Leffue (sax). Miller records the IR.

Discussion 1 on playing with the live convolver, with Miller Puckette and Steven Leffue.


Improvised liveconvolver performance, Miller Puckette (guitar) and Steven Leffue (sax). Steven records the IR.

Discussion 2 on playing with the live convolver, with Miller Puckette and Steven Leffue.

Steven Leffue and Kyle Motl

Two different feature-modulator mappings was used, and we present one take of each mapping.  Like the mappings used for Miller/Steven, these were designed to enable a rich interaction scenario for the performers to explore in their improvisation. The musicians were given only a very brief introduction to the specifities of the mapping. The mapping used for the first take closely resembles the mapping for Steven/Miller, with just a few changes to accomodate for the different musical context and how the analysis methods responds to the instruments.

  • Bass transient density: shorter reverb time on sax
  • The reverb equalization (highpass and lowpass was skipped
  • Bass envelope crest: increase send level for granular processing on sax
  • Bass rms amplitude: Parametric morph between granular tremolo and granular time stretch on sax


I n the first crossadaptive take in this duo, Kyle commented that the amount of delay made it hard to play, that any fast phrases just would turn into a mush. It seemed the choice of effects and the modulations was not optimal, so we tried another configuration of effects (and thus another mapping of features to modulators)


This mapping had earlier been used for duo playing between Kyle (bass) and Øyvind (vocal) on several occations, and it was merely adjusted to accomodate for the different timbral dynamics of the saxophone. In this way, Kyle was familiar with the possibilities of the mapping, but not with the context in which it would be used.
The granular processing done on both instrument was done with the Hadron Particle Synthesizer, which allows a multidimensional parameter navigation through a relatively simple modulation interface (X, Y and 4 expression controllers). The specifics of the actual modulation routing and mapping within Hadron can be described, but it was thought that in the context of the current report, further technical detail would only take away from the clarity of the presentation. Even though the details of the parameter mapping was designed deliberately, at this point in the performative approach to playing with it, we just did no longer pay attention to technical specifics. Rather, the focus was on letting go and trying to experience the timbral changes rather than intellectualizing them.

The effects used:
Effects on sax: Delay, granular processing
Effects on bass: Reverb, granular processing

The features and the modulator mappings:
(also stating an intended purpose for each mapping)

  • Sax envelope crest: shorter reverb time on bass
  • Sax rms amp: higher cutoff frequency for reverb highpass filter

Purpose: louder sax will make the bass reverb thinner

  • Sax transient density: lower cutoff frequency for reverb lowpass filter
  • Sax envelope dynamics (dynamic range): higher cutoff frequency for reverb lowpass filter

Purpose: faster sax playing will make the reverb less prominent, but more dynamic playing will enhance it

  • Sax spectral flux: Granular processing state morph (Hadron X-axis) on bass
  • Sax envelope dynamics: Granular processing state morph (Hadron Y-axis) on bass
  • Sax rms amplitude: Granular processing state morph (Hadron Y-axis) on bass

Purpose: animation and variation

  • Bass spectral flatness: higher cutoff frequency of the delay feedback path on sax
    Purpose: more noisy bass playing will enhance delayed repetitions
  • Bass envelope dynamics: less delay feedback on sax
    Purpose: more dynamic playing will give less repetitions in delay on sax
  • Bass pitch: upward spectral shift on sax

Purpose: animation and variation, pulling in same direction (up pitch equals shift up)

  • Bass transient density: Granular process expression 1 (Hadron) on sax
  • Bass rms amplitude: Granular process expression 2 & 3 (Hadron) on sax
  • Bass rhythmic irregularity: Granular process expression 4 (Hadron) on sax
  • Bass MFCC diff: Granular processing state morph (Hadron X-axis) on sax
  • Bass envelope crest: Granular processing state morph (Hadron Y-axis) on sax

Purpose: multidimensional and rich animation and variation


On the second crossadaptive take between Steven and Kyle, I asked: “Does this hinder interaction or does or make something interesting happen?”
Kyle says it hinders the way they would normally play together. “We can’t go to our normal thing because there’s a third party, the mediation in between us. It is another thing to consider.” Also, the balance between the acoustic sound and the processing is difficult. This is even more difficult when playing with headphones, as the dynamic range and response is different. Sometimes the processing will seem very quiet in relation to the acoustic sound of the instruments, and at other times it will be too loud.
Steven says at one point he started not paying attention to the processing and focused mostly on what Kyle was doing. “Just letting the processing be the reaction to that, not treating it as an equal third party. … Totally paying attention to what the other musician is doing and just keeping up with him, not listening to myself.” This also mirrors the usual options of improvisational listening strategy and focus, of listening to the whole or focusing on specific elements in the resulting sound image.

Longer reflective conversation between Steven Leffule, Kyle Motl and Øyvind Brandtsegg. Done after the crossadaptive feature-modulator takes, touching on some of the problems encountered, but also reflecting on the wider context of different kinds of music accompaniment systems.

Liveconvolver tracks:

Each of the musicians was given the role of “impulse response recorder” in turn, while the other then played through the convolver effect.



Discussion 1 on playing with the live convolver, with Steven Leffue and Kyle Motl.

Discussion 2 on playing with the live convolver, with Steven Leffue and Kyle Motl.