Session UCSD 14. Februar 2017

Liveconvolver4_trig

Session objective

The session objective was to explore the live convolver , how it can affect our playing together and how it can be used. New convolver functionality for this session is the ability to trigger IR update via transient detection, as opposed to manual triggering or periodic metro-triggered updates. The transient triggering is intended to make the IR updating more intuitive and providing a closer interaction between the two performers. We also did some quick exploration of adaptive effects processing (not cross-adaptive, just auto-adaptive). The crossadaptive interactions can sometimes be complex. One way to familiarize ourselves with the analysis methods and the modulation mappings could be to allow musicians to explore how these are directly applied to his or her own instrument.

Kyle Motl: bass
Oeyvind Brandtsegg: convolver/singer/tech/camera

Live convolver

Several takes were done, experimenting with manual and transient triggered IR recording. Switching between the role of “recording/providing the impulse response” and of “playing through, or on, the resulting convolver”. Reflections on these two distinct performative roles were particularly friutful and to some degree surprising. Technically, the two sound sources of audio convolution are equal, it does not matter which way the convolution is done (one sound with the other, or vice versa). The output sound will be the same. However, our liveconvolver does treat the two signals slightly differently, since one is buffered and used as the IR, while the other signal is directly applied as input to the convolver. The buffering can be updated at any time, in such a fashion that no perceptible extra delay occurs due to that part of the process. Still, the update needs to be triggered somehow. Some of the difference in roles occur due to the need for (and complications of) the triggering mechanism, but perhaps the deepest difference occurs due to something else. There is a performative difference in the action of providing an impulse response for the other one to use, and the action of directly playing through the IR left by the other. Technically, the difference is minute, due to the streamlined and fast IR update. Perhaps also the sounding result will be perceptually indistinguishable for an outside listener. Still the feeling for the performer is different within those two roles.  We noted that one might naturally play different type of things, different kinds of musical gestures, in the two different roles. This inclination can be overcome by intentionally doing what would belong to the other role, but it seem the intuitive reaction to the role is different in each case.

Video: a brief glimpse into the session environment.


Take 1: IR recorded from vocals, with a combination of manual and transient triggering. The bass is convolved with the live vocal IR. No direct (dry) signals was recorded, only the convolver output. Later takes in the session also recorded the direct sound from each instrument, which makes it easier to identify the different contributions to the convolution. This take serves more as a starting point from where we continued working.


Take 2: Switched roles, so IR is now recorded from the bass, and the vocals are convolved with this live updated IR. The IR updates were triggered by transient detection of the bass signal.


Take 3: As  for take 2, the IR is recorded from bass. Changed bass mic to try to reduce feedback, adjusted transient triggering parameters so that IR recording would be more responsive

Video: Reflections on IR recording, on the roles of providing the IR as opposed to being convolved by it.

Kyle noticed that he would play different things when recording IR than when playing through an IR recorded by the vocals. Recording an IR, he would play more percussive impulses, and for playing through the IR he would explore the timbre with more sustained sounds. In part, this might be an effect of the transient triggering, as he would have to play a transient to start the recording. Because of this we also did one recording of manually triggered IR recording with Kyle intentionally exploring more sustained sounds as source for the IR recording. This seems to even out the difference (between recording IR and playing through it) somewhat, but there is still a performatively different feeling between the two modes.
When having the role of “IR recorder/provider”, one can be very active and continuously replace the IR, or leave it “as is” for a while, letting the other musician explore the potential in this current IR. Being more active and continuously replacing the IR allows for a closer musical interaction, responding quickly to each other. Still, the IR is segmented in time, so the “IR provider” can only leave bits and pieces for the other musician to use, while the other musician can directly project his sounds through the impulse responses left by the provider.


Take 4:IR is recorded from bass. Manual triggering of the IR recording (controlled by a button), to explore the use of more sustained impulse responses.

Video: Reflections on manually triggering the IR update, and on the specifics of transient triggered updates.


Take 5: Switching roles again, so that the IR is now provided by the vocals and the bass is convolved. Transient triggered IR updates, so every time a vocal utterance starts, the IR is updated. Towards the end of the take, the potential for faster interaction is briefly explored.

Video: Reflections on vocal IR recording and on the last take.

Convolution sound quality issues

The nature of convolution will sometimes create a muddy sounding audio output. The process will dampen high frequency content and emphasize lower frequencis. Areas of spectral overlap between two two signals will also be emphasized, and this can create a somewhat imbalanced output spectrum. As the temporal features of both sounds are also “smeared” by the other sound, this additionally contributes to the potential for a cloudy mush. It is welll known that brightening the input sounds prior to convolution can alleviate some of these problems. Further refinements have been done recently by Donahue, Erbe and Puckette in the ICMC paper “Extended Convolution Techniques for Cross-Synthesis” . Although some of the proposed techniques does not allow realtime processing, the broader ideas can most certainly be adapted. We will explore this further potential for refinement of our convolver technique.

As can be heard in the recordings from this session, there is also a significant feedback potential when using convolution in a live environment and the IR is sampled in the same room as it is directly applied. The recordings were made with both musicians listening to the convolver output over speakers in the room. If we had been using headphones, the feedback would not have been a problem, but we wanted to explore the feeling of playing with it in a real/live performance setting. Oeyvind would control simple hipass and lowpass filtering of the convolver output during performance, and thus had a rudimentary means of manually reducing feedback. Still, once unwanted resonances are captured by the convolution system, they will linger for a while in the system output. Nothing has been done to repair or reduce the feedback in these recordings, we keep it as a strong reminder that it is something that needs to be fixed in the performance setup. Possible solutions consist of exploring traditional feedback reduction techniques, but it could also be possible to do an automatic equalization based on the accumulated spectral content of the IR. This latter approach might also help output scaling and general spectral balance, since already prominent frequencies would have less poential to create strong resonances.

Adaptive processing

As a way to investigate and familiarize ourselves with the different analysis features and the modulation mappings of these signals, we tried to work on auto-adaptive processing. Here, features of the audio input affects effect processing of the same signal. The performer can then more closely interact with the effects and explore how different playing techniques are captured by the analysis methods.


Adaptive take 1: Delay effect with spectral shift. Short (constant) delay time, like a slapback delay or comb filter. Envelope crest controls the cutoff frequency of a lowpass filter inside the delay loop. Spectral flux controls the delay feedback amount. Transient density controls a frequency shifter on the delay line output.


Adaptive take 2: Reverb. Rms (amplitude) controls reverb size. Transient density controls the cutoff frequency of a highpass filter applied after the reverb, so that higher density playing will remove low frequencies from the reverb. Envelope crest controls a similarly applied lowpass filter, so that more dynamic playing will remove high frequencies from the reverb.


Adaptive take 3: Hadron. Granular processing where the effect has its own multidimensional mapping from input controls to effect parameters. The details of the mapping is more complex. The resulting effect is that we have 4 distinctly different effect processing settings, where the X and Y axis of a 2D control surface provides a weighted interpolation between these 4 settings. Transient density controls the X axis, and envelope crest controls the Y axis. A live excerpt of the controls surface is provided in the video below.

Video of the Hadron Particle Synthesizer control surface controlled by bass transient density and envelope crest.

Some comments on analysis methods

The simple analysis parameters, like rms amplitude and transient density works well on all (most) signals. However, other analysis dimensions (e.g. spectral flux , pitch , etc) have a more inconsistent relation between signal and analysis output when used on different types of signals. They will perform well on some instrument signals and less reliably on others. Many of the current analysis signals have been developed and tuned with a vocal signal, and many of them do not work so consistently for example on a bass signal. Due to this, the auto-adaptive control (as shown in this session) is sometimes a little bit “flaky”. The auto-adaptive experiments seems a good way to discover such irregularities and inconsistencies in the analyzer output. Still, we also have a dawning realization that musicians can thrive with some “livelyness” in the control output. Some surprises and quick turns of events can provide energy and creative input for a performer. We saw this also in the Trondheim session where rhythm analysis was explored , and in the discussion of this in the follow-up seminar . There, Oeyvind stated that the output of the rhythm analyzer was not completely reliable, but the musicians stated they were happy with the kind of control it gave, and that it felt intuitive to play with. Even though the analysis sometimes fail or misinterprets what is being played, the performing musician will react to whatever the system gives. This is perhaps even more interesting (for the musician), says Kyle. It creates some sort of tension, something not entirely predictable. This unpredictability is not the same as random noise. There is a difference between something truly random and something very complex (like one could say about an analysis system that misinterprets the input). The analyzer would react the same way to an identical signal, but give unproportionally large variance in the output due to small variances in the input. Thus it is a nonlinear complex response from the analyzer. In the technical sense it is controllable and predictable, but it is very hard to attain precise and determined control on a real world signal. The variations and spurious misinterpretations creates a resistance for the performer, something that creates energy and drive.

Seminar 16. December

Philosophical and aesthetical perspectives

–report from meeting 16/12 Trondheim/Skype

Andreas Bergsland, Trond Engum, Tone Åse, Simon Emmerson, Øyvind Brandtsegg, Mats Claesson

The performers experiences of control :

In the last session ( Trondheim December session ) Tone and Carl Haakon (CH) worked with rhythmic regularity and irregularity as parameters in the analysis. They worked with the same kind of analysis, and the same kind of mapping analysis to effect parameter. After first trying the opposite, they ended up with: Regularity= less effect, Irregularity= more. They also included a sample/hold/freeze effect in one of the exercises. Øyvind commented on how Tone in the video stated that she thought it would be hard to play with so little control, but that she experienced that they worked intuitively with this parameter, which he found was an interesting contradiction. Tone also expressed in the video that on the one side she would sometimes hope for some specific musical choices from CH (“I hope he understands”) but on the other hand that she “enjoyed the surprises”. These observations became a springboard for a conversation about a core issue in the project: the relationship between control and surprise, or between controlling and being controlled . We try to point here to the degree of specific and conscious intentional control, as opposed to “what just happens” due to technological, systemic, or accidental reasons.  The experience from the Trondheim December session was that the musicians preferred what they experienced as an intuitive connection between input and outcome, and that this facilitated the process in the way that they could “act musically”. (This “intuitive connection” is easily related to Simon’s comment about “making ecological sense” later in this discussion.)  Mats commented that in the first Oslo session the performers stated that they felt a similarity to playing with an acoustic instrument. He wondered if this experience had to do with the musicians’ involvement in the system setup, while Trond pointed out that the Trondheim December session and Oslo session were pretty similar in this respect. A further discussion about what “control”, “alienation” and “intuitive playing” can mean in these situations seems appropriate.

Aesthetic and individual variables

This led to a further discussion about how we should be aware that the need for generalising and categorising – which is necessary at some point to actually be able to discuss matters – can lead us to overlook important variable parameters such as:

  • Each performer’s background, skills, working methods, aesthetics and preferences
  • That styles and genres relate differently to this interplay

A good example of this is Maja’s statement in the Brak/Rug session that she preferred the surprising, disturbing effects, which gave her new energy and ideas. Tone noted that this is very easy to understand when you have heard Maja’s music, and even easier if you know her as an artist and person. And it can be looked upon as a contrast to Tone/CH who seek a more “natural” connection between action and sounding result, in principle they want the technology to enhance what they are already doing. But, as cited above, Tone commented that this is not the whole truth. Surprises are also welcome in the Tone/Carl Haakon collaboration.

Simon underlined, because of these variables, the need to pin down in each session what actually happens , and not necessarily set up dialectical pairs. Øyvind pointed out, on the other hand, the need to lay out possible extremes and oppositions to create some dimensions (and terms) along which language can be used to reflect on the matters at hand.

Analysing or experiencing?

Another individual variable, both as audience and performer, is the need to analyse, to understand what is happening in the perceiving of a performance. One example brought up related to this was Andreas’ experience of his change of audience perspective after he studied ear training. This new knowledge led him to take an analysing perspective, wanting to know what happened in a composition when performed. He also said: “as an audience you want to know things, you analyse”. Simon referred to “the inner game of tennis” as another example: how it is possible to stop appreciating playing tennis because you become too occupied analysing the game – thinking of the previous shot rather than clearing the mind ready for the next. Tone pointed at the individual differences between performers, even within the same genre (like harmonic jazz improvisation) – some are very analytic, also in the moment of performing, while others are not. This also goes for the various groups of audiences, some are analytic, some are not – and there is also most likely a continuum between the analytic and the intuitive musician/audience.  Øyvind mentioned experiences from presenting the crossadaptive project to several audiences over the last few months. One of the issues he would usually present is that it can be hard for the audience to follow the crossadaptive transformations, since it is an unfamiliar mode of musical (ex)change.  However, responses to some of the simpler examples he then played (e.g. amplitude controlling reverb size and delay feedback), yielded the response that it was not hard to follow. One of the places where this happened was Santa Barbara, where Curtis Roads commented he thought it quite simple and straightforward to follow. Then again, in the following discussion, Roads also conceded that it was simple because the mapping between analysis parameter and modulated effect was known. Most likely it would be much harder to deduce what the connection was just by listening alone, since the connection (mapping) can be anything. Cross Adaptive processing may be a complicated situation, not easy to analyse either for the audience or the performer. Øyvind pointed towards differences in parameters, as we had also discussed collectively: That some were more “natural” than others, like the balance between amplitude and effect, while some are more abstract, like the balance between noise and tone, or regular/irregular rhythms.

Making ecological sense/playing with expectations

Simon pointed out that we have a long history of connections to sound: some connections are musically intuitive because we have used them perhaps for thousands of years, they make ‘ecological’ sense to us. He referred to Eric Clarke’s “ Ways of listening: An ecological approach to the perception of musical meaning (2005)” and William Gaver “ What in the world do we hear?: An ecological approach to auditory event perception ” (1993). We come with expectations towards the world, and one way of making art is playing with those expectations. In modernist thinking there is a tendency to think of all musical parameters as equal – or at least equally organised – which may easily undermine their “ecological validity” – although that need not stop the creation of ‘good music’ in creative hands.

Complexity and connections

So, if the need for conscious analysis and understanding will vary between musicians, is this the same for the experienced connection between input and output? And what about the difference between playing and listening as part of the process, or just listening, either as a musician, musicologist, or an audience member? For Tone and Carl Haakon it seemed like a shared experience that playing with regularity/non- regularity felt intuitive for both – while this was actually hard for Øyvind to believe, because he knew the current weakness in how he had implemented the analysis. Parts of the rhythmic analysis methods implemented are very noisy, meaning they produce results that sometimes can have significant (even huge) errors in relation to a human interpretation of the rhythms being analysed. The fact that the musicians still experienced the analyses as responding intuitively is interesting, and it could be connected to something Mats said later on: “the musicians listen in another way, because they have a direct contact with what is really happening”. So, perhaps, while Tone &CH experienced that some things really made musical sense, Øyvind focused on what didn’t work – which would be easier for him to hear?  So how do we understand this, and how is the analysis connected to the sounding result? Andreas pointed out that there is a difference between hearing and analysing: you can learn how the sound behaves and work with that. It might still be difficult to predict exactly what will happen.Tone’s comment here was that you can relate to a certain unpredictability and still have a sort of control over some larger “groups of possible sound results“ that you can relate to as a musician. There is not only an urge to “make sense” (= to understand and “know” the connection) but also an urge to make “aesthetical sense”.

With regards to the experienced complexity, Øyvind also commented that the analysis of a real musical signal is in many ways a gross simplification, and by trying to make sense of the simplification we might actually experience it as more complex. The natural multidimensionality of the experienced sound is lost, due to the singular focus on one extracted feature. We are reinterpreting the sound as something simpler. An example mentioned was the vibrato, which is a complex input and a complex analysis, that could in some analyses be reduced to a simple “more or less” dimension. This issue also relates to the needs of our project to construct new methods of analysis, so that we can try to find analysis dimensions that correspond to some perceptual or experiential features.

Andreas commented “It is quite difficult to really know what is going on without having knowledge of the system and the processes. Even simple mappings can be difficult to grasp only by ear”. Trond reminded us after the meeting about the further complexity that was perhaps not so present in our discussion: we do not improvise with only one parameter “out of control” (adaptive processing). In the cross adaptive situation someone else is processing our own instrument, so we do not have full control over this output, and at the same time we do not have any control over what we are processing, the input (cross- adapting), which in both cases could represent an alienation and perhaps a disconnection from the input-result- relation. And of course the experience of control is also connected to “understanding” the processing analysis you are working with.

The process of interplay :

Øyvind referred to Tone’s experience of a musical “need” during the Trondheim session, expressed: ”I hope he understands…” –  when she talked about the processes in the interplay. This was pointing at how you realise during the interplay that you have very clear musical expectations and wishes towards the other performer.  This is not in principle different from a lot of other musical improvising situations. Still, because you are dependent on the other’s response in a way that is defining not only the wholeness, but your own part in it, this thought seemed to be more present than is usual in this type of interplay.

Tools and setup

Mats commented that very many of the effects that are used are about room size, and that he felt that this had some – to him – unwanted aesthetical consequences. Øyvind responded that he wanted to start with effects that are easy to control and easy to hear the control of. Delay feedback and reverb size are such effects. Mats also suggested that it was an important aesthetical choice not to have effects all the time, and thereby have the possibility to hear the instrument itself. So to what extent should you be able to choose? We discussed the practical possibilities here: some of the musicians (for example Bjørnar Habbestad) have suggested a foot pedal,  where the musician could control the degree to which their actions will inflict changes on the other musician’s sound (or the other way around, control the degree to which other forces can affect his sound). Trond suggested one could also have control over the level of signal/output  for the effects, adjusting the balance between processed and unprocessed sound. As Øyvind commented, these types of control could be a pedagogical tool for rehearsing with the effect, turning the processing on and off to understand the mapping better. The tools are of course partly defining the musician’s balance between control, predictability and alienation. Connected to this, we had a short discussion regarding amplified sound in general, that the instrumental sound coming from a speaker located elsewhere in the room in itself could already represent an alienation. Simon referred to the Lawrence Casserley /Evan Parker principle of “each performer’s own processor”, and the situation before the age of the big PA, where the electronic sound could be localised to each musician’s individual output. We discussed possibilities and difficulties with this in a cross adaptive setting: which signal should come out of your speaker? The processed sound of the other, or the result of the other processing you? Or both? and then what would the function be – the placement of the sound is already disturbed.

Rhythm

New in this session was the use of the rhythmical analysis. This is very different from all other parameters we have implemented so far. Other analyses relate to the immediate sonic character, but rhythmic analysis tries to extract some  temporal features, patterns and behaviours. Since much of the music played in this project is not based on a steady pulse, and even less confined to a regular grid (meter), the traditional methods of rhythmic analysis will not be appropriate. Traditionally one will find the basic pulse, then deduce some form of meter based on the activity, and after this is done one can relate further activity to this pulse and meter. In our rhythmical analysis methods we have tried to avoid the need to first determine pulse and meter, but rather looked into the immediate time relationships between neighbouring events. This creates much less support for any hypothesis the analyser might have about the rhythmical activity, but also allows much greater freedom of variation (stylistically, musically) in the input. Øyvind is really not satisfied with the current status of the rhythmic analysis (even if he is the one mainly responsible for the design), but he was eager to hear how it worked when used by Tone and Carl Haakon.  It seems that the live use by real musicians allowed the weaknesses of the analyses to be somewhat covered up. The musicians reported that they felt the system responded quite well (and predictably) to their playing. This indicates that, even if refinements are much needed, the current approach is probably a useful one. One thing that we can say for sure is that some sort of rhythmical analysis is an interesting area of further exploration, and that it can encode some perceptual and experiential features of the musical signal in ways that make sense to the performers. And if it makes sense to the performers, we might guess that it will have the possibility of making sense to the listener as well.

Andreas: How do you define regularity (ex. claves-based musics), how “less regular” is that from a steady beat.

Simon: If you ask a difficult question with a range of possible answers this will be difficult to implement within the project.

As a follow up to the refinement of rhythmic analysis, Øyvind asked:  how would *you* analyze rhythm?

Simon: I wouldn’t analyze rhythm for example timeline in African music: a guiding pulse that is not necessarily performed and may exist only in the performer’s head. (This relates directly to Andreas’s next point – Simon later withdrew the idea that he would not analyse rhythm and acknowledged its usefulness in performance practice.)

Andreas: Rhythm is a very complex phenomenon, which involves multiple interconnected temporal levels, often hierarchically organised. Perceptually, we have many ongoing processes involving present, past and anticipations about future events. It might be difficult to emulate such processes in software analysis. Perhaps pattern recognition algorithms can be good for analysing rhythmical features?

Mats: what is rhythm? In our examples: gesture may be more useful than rhythm

Øyvind: rhythm is repeatability, perhaps? Maybe we interpret this in the second after

Simon: no I think we interpret virtually at the same time

Tone: I think of it as a bodily experience first and foremost.  (Thinking about this in retrospect, Tone adds: The impulses -when they are experienced as related to each other- creates a movement in the body. I register that through the years (working with non-metric rhythms in free improvisation) there is less need for a periodical set of impulses to start this movement. (But when I look at babies and toddlers, I recognise this bodily reaction to irregular impulses.) I recognice what Andreas says- the movement is trigged by the expectation of more to come. (Think about the difference in your body when you wait for the next impulse to come (anticipations) and when you know that it is over….)

Andreas: When you listen to rhythms, you group events on different levels and relate to what was already played. The grouping is often referred to as «chunking» (psychology). Thus, it works both on an immediate level (now) as well as a more overarching level (bar, subsection, section) because we have to relate what we hear to the earlier. You can simplify or make it complex

Concerts and presentations, fall 2016

A number of concerts, presentations and workshops were given during October and November 2016. We could call it the 2016 Crossadaptive Transatlantic tour, but we won’t. This post gives a brief overview.

Concerts in Trondheim and Göteborg

BRAK/RUG was scheduled for a concert (with a preceding lecture/presentation) at Rockheim, Trondheim on 21. October. Unfortunately, our drummer Siv became ill and could not play. At 5 in the afternoon (concert start at 7) we called Ola Djupvik to ask if he could sit in with us. Ola has experience from playing in a musical setting with live processing and crossadaptive processing, for example the Session 20. – 21 September,  and also from performing with music technology students Ada Mathea Hoel, Øystein Marker and others. We were very happy and grateful for his courage to step in on such short notice. Here’s and excerpt from the presentation that night, showing vocal pitch controlling reverb on the drums (high pitch means smaller reverb size), transient density on the drums controlling delay feedback on the vocals (faster playing means less feedback).

There is a significant amount of crossbleed between vocals and drums, so the crossadaptivity is quite flaky. We still have some work to do on source separation to make this work well when playing live with a PA system.


Thanks to Tor Breivik for recording the Rockheim event. The clip here shows only the crossadaptive demonstration. The full concert is available on Soundcloud

brak_trio_rockheim1
Brandtsegg, Ratkje, Djupvik trio at Rockheim

The day after the Trondheim concert, we played at the Göteborg Art Sounds festival. Now, Siv was feeling better and was able to play. Very nice venue at Stora Teatern. This show was not recorded.

And then we take… the US

The crossadaptive project was presented  at the Transatalantic Forum in Chicago on October 24, in a special session titled “ Sensational Design: Space, Media, and the Senses ”. Both Sigurd Saue, Trond Engum and myself (Øyvind Brandtsegg) took part in the presentation, showing the many-faceted aspects of our work. Being a team of three people also helped the networking effort that is naturally a part of such a forum. During our stay in Chicago, we also visited the School of the Art Institute of Chicago, meeting Nicolas Collins, Shawn Decker, Lou Mallozzi, and Bob Snyder to start working on exchange programs for both students and faculty. Later in the week, Brandtsegg did a presentation of the crossadaptive project during a SAIC class on audio projects.

sigurd_and_bob
Sigurd Saue and Bob Snyder at SAIC

After Chicago, Engum and Saue went to Trondheim, while I traveled further on to San Francisco, Los Angeles, Santa Barabara, and then finally to San Diego.
In the Bay area, after jamming with Joel Davel in Paul Dresher’s studio, and playing a concert with Matt Ingalls and Ken Ueno at Tom’s Place, I presented the crossadaptive project at CCRMA, Stanford University on November 2.  The presentations seemed well received and spurred a long discussion where we touched on the use of MFCC’s, ratios and critical bands, stabilizing of the peaks of rhythmic autocorrelation, the difference of the correlation between two inputs (to get to the details of each signal), and more. Getting the opportunity to discuss audio analysis with this crowd was a treat.  I also got the opportunity to go back the day after to look at student projects, which I find gives a nice feel of the vibe of the institution. There is a video of the presentation here

After Stanford, I also did a presentation at the beautiful CNMAT at UC Berkeley, with Ed Campion, Rama Gottfried, a group of enthusiastic students. There I also met colleague P.A. Nilsson from Göteborg, as he was on a residency there. P.A.’s current focus on technology to intervene and structure improvisations is closely related to some of the implications of our project.

cnmat
CNMAT, UC Berkeley

On November 7 and 8, I did workshops at California Institute of the Arts, invited by Amy Knoles. In addition to presenting the technologies involved, we did practical studies where the students played in processed settings and experienced the musical potential and also the different considerations involved in this kind of performance.

calarts_workshop
Calarts workshops

Clint Dodson and Øyvind Brandtsegg experimenting together at CalArts

At UC Santa Barbara, I did a presentation in Studio Xenakis on November 9. There, I met with Curtis Roads, Andres Cabrera, and a broad range of their colleagues and students. With regards to the listening to crossadaptive performances, Curtis Roads made a precise observation that it is relatively easy to follow if one knows the mappings, but it could be hard to decode the mapping just by listening to the results . In Santa Barbara I also got to meet Owen Campbell, who did a master thesis on crossadaptive and got insight into his research and software solutions. His work on ADEPT was also presented at the AES workshop on intelligent music production at Queen Mary University this September, where Owen also met our student Iver Jordal, presenting his research on artificial intelligence in crossadaptive processing.

San Diego

Back in San Diego, I did a combined presentation and concert for the computer music forum on November 17.  I had the pleasure of playing together with Kyle Motl on double bass for this performance.

sd_kyle_and_oyvind
Kyle Motl and Øyvind Brandtsegg, UC San Diego

We demonstrated both live processing and crossadaptive processing between voice and bass.  There was a rich discussion with the audience. We touched on issues of learning (one by one parameter, or learning a combined and complex parameter set like one would do on an acoustic instrument), etudes, inverted mapping sometimes being more musically intuitive, how this can make a musician pay more attention to each other than to self (frustrating or liberating?), and tuning of the range and shape of parameter mappings (still seems to be a bit on/off sometimes, with relatively low resolution in the middle range).

First we did an example of a simple mapping:
Vocal amplitude reduce reverb size for bass,
Bass amplitude reduce delay feedback on vocals


Then a more complex example:
Vocal transient density -> Bass filter frequency of a lowpass filter
Vocal pitch -> Bass delay filter frequency
Vocal percussive -> Bass delay feedback
Bass transient density -> Vocal reverb size (less)
Bass pitch+centroid -> Vocal tremolo speed
Bass noisiness -> Vocal tremolo grain size (less)


We also demonstrated another and more direct kind of crossadaptive processing, when doing convolution with live sampled impulse response. Oeyvind manually controlled the IR live sampling of sections from Kylse’s playing, and also triggered the convolver with tapping and scratching on a small wooden box with a piezo microphone. The wooden box source is not heard directly in the recording, but the resulting convolution is. No other processing is done, just the convolution process.


We also played a longer track of regular live processing this evening. This track is available on Soundcloud

Thanks to UCSD and recording engineers Kevin Dibella and James Forest Reid for recording the Nov 17 event.

Oslo, First Session, October 18, 2016

First Oslo Session. Documentation of process
18.11.2016

Participants
Gyrid Kaldestad, vocal
Bernt Isak Wærstad, guitar
Bjørnar Habbestad, flute

Observer and Video
Mats Claesson

The Session took place in one of the sound studios at the Norwegian Academy of Music, Oslo , Norway

Gyrid Kaldestad (vocal) and Bernt Isak Wærstad (guitar) had one technical/setup meeting beforehand, and there were numerous emails going back and forth before the session that was about technical issues.
Bjørnar Habbestad (flute) where invited into the session.

The observer, decided to make a video documentation of the session.
I’m glad I did because I think it gives a good insight off the process. And a process it was!
The whole session lasted almost 8 hours and it was not until the very last 30 minutes that playing started.

I am (Mats Claesson) not going to comment on the performative musical side of the session. The only reason for this is that the music making happend at the very end of the session, was very short and it was not recorded so I could evaluate it “in depth” However, just watch the comments, from the participants, at the end of the video. They are very positive…..
I think from the musicians side it was rewarding and highly interesting. I am confident that the next session will generate an musical outcome that is substantial enough to be comment on, from both a performative and a musical side.

In the video there are no processed sound of the very last playing due to use of headphone, but you can listen to excerpts posted below the video.

Here is a link to the video

Reflections on the process given from the perspective of the musicians:

We agreed to make a limited setup to have better control over the processing. Starting with basic sounds and basic processing tools so that we easier could control the system in a musical way. We started with a tuning analysis for each instrument (voice, flute, guitar)

Instead of chosing analysis parameter up front, we analysed different playing techniques, e.g. non- tonal sounds (sss, shhh), multiphonics etc., and saw how the analyser responded. We also recorded short samples of the different techniques that each of us usually play, so that we could investigate the analysis several times.

This is the analysis results we got:

analysis

Since we’re all musicians experienced with live processing, we made a setup based on effects that we already know well and use in our live-electronic setup (reverb, filter, compression, ring modulation and distortion).

To set up meaningful mappings, we chose an approach that we entitled “spectral ducking”, where a certain musical feature on one instrument would reduce the same musical feature on the other – e.g. a sustained tonal sound produced by the vocalist, would reduce harmonic musical features of the flute by applying ring modulation. Here is a complete list of the mappings used:

mapping

Excerpt #1 – Vocal and flute

Excerpt #2 – Vocal and flute

Excerpt #3 – Vocal and flute

Excerpt #4 – Vocal and flute

Lack of consisive and presise analysis results from the guitar in combination with time limitation, it wasn’t possible to set up mappings for the guitar and flute. We did however test out the guitar and flute in the last minutes of the session, where the guitar simply took the role of the vocal in terms of processing and mapping. A knowledge of the vocal analysis and mapping, made it possible to perform with the same setup even though the input instrument had changed. Some short excerpts from this performance can be heard below.

Excerpt #5 – Guitar and flute

Excerpt #6 – Guitar and flute

Excerpt #7 – Guitar and flute

Reflections and comments:

  • We experienced the importance of exploring new tools like this on a known system. Since none of us knew Reaper from before, we used spent quite a lot of time learning a new system (both while preparing and during the session)
  • Could the meters analyser be turned the other way around? It is a bit difficult to read sideways.
  • It would be nice to be able to record and export control data from the analyser tool that will make it possible to use it later in a synthesis.
  • Could it be an idea to have more analyzer sources pr channel? The Keith McMillian Softstep mapping software could possibly be something to look at for inspiration?
  • The output is surprisingly musical – maybe this is a result of all the discussions and reflections we did before we did the setup and before we played?
  • The outcome is something else than playing with live electronics- it is immediate and you can actually focus on the listening – very liberating from a live electronics point of view!
  • The system is merging the different sounds in a very elegant way.
  • Knowing that you have an influence on your fellow musicians output forces you to think in new ways when working with live electronics.
  • The experience for us is that this is similar to work acoustically.

Seminar at De Montfort

Simon_and_Leigh
Simon and Leigh in Leigh’s office at De Montfort

Wednesday June 8 th we visited Simon Emmerson at De Montfort and also met Director Leigh Landy. We were very well taken care of and had a pleasant and interesting stay. One of the main objectives was to do seminar with presentation of the project and discussion among the De Montfort researchers. We found that their musical preference seems to overlap considerably with our own, in the focus on free improvisation and electroacoustic art music. As this is the most obvious and easy context to implement experimental techniques (like the crossadaptive ones) we had taken care to also present examples of use within other genres. This could be interpreted as if we were more interested in traditional applications/genres than the free improvised genres. Now knowing the environment at Leicester better, we could probably have put more emphasis on the free electroacoustic art music applications. But indeed this led to interesting discussions about applicability, for example:

*In metric /rhythmic genres, one could easier analyze and extract musical features related to bar boundaries and rhythmic groupings.

* Interaction itself could also create meter, as the response time (both human and technical), has a rhythm and periodicity that can evolve musically due to the continuous feedback processes built into the way we interact with such a system and each other in the context of such a system..

* Static and deterministic versus random mappings. Several people was interested in more complex and more dynamic controller mappings, expressing interest and curiosity towards playing within a situation where the mapping could quickly and randomly change. References were made to Maja S.K. Ratkje and that her kind of approach would probably make her interested in situations that were more intensely dynamic.  Her ability to respond to the challenges of a quickly changing musical environment (e.g. changes in the mapping) also correlating with an interest to explore this kind of complex situations.  Knowing Maja from our collaborations, I think they may be right, take note to discuss this with her and try to make some challenging mapping situations for her to try out.

* it was discussed whether the crossadaptive methods could be applied to the “dirty electronics” ensemble/course situation, and there was an expressed interest in exploring this. Perhaps it will be crossadaptivity in other ways than what we use directly on our project, as the analysis and feature extraction methods does not necessarily transfer easily to the DIY (DIT – do it together, DIWO – Do it with others) domain. The “Do it with others” approach resonates well with what we generally approach btw.

* The complexity is high even with two performers. How many performers do we envision this to be used with? How large an ensemble? As we have noticed ourselves also, following the actions of two performers somehow creates a multi-voice polyphonic musical flow (2 sources, each source’s influence on the other source and the resulting timbral change resulting thereof, and the response of the other player to these changes). How many layers of polyphony can we effectively hear and distinguish when experiencing the music? (as performers or as audience). References were made to the laminal improvisation techniques of AMM.

* Questions of overall form. How will interactions under a crossadaptive system change the usual formal approach of a large overarching rise and decay form commonly found in “free” improvisation, At first I took the comment to suggest that we also could apply more traditional MIR techniques of analyzing longer segments of sound to extract “direction of energy” and/or other features evolving over longer time spans. This could indeed be interesting, but also poses problems of how the parametric response to long-terms changes should act (i.e. we could accidentally turn up a parameter way too high, and then it would stay high for a long time before the analysis window would enable us to bring it back down). Now, in some ways this would also resemble using extremely long attack and decay times for the low pass filter we already have in place in the MIDIator, creating very slow responses, needing continued excitation over a prolonged period before the modulator value will respond. After the session, I discussed this more with Simon, and he indicated that the large form aspects were probably just as much meant with regards to the perception of the musical form, rather than the filtering and windowing in the analysis process. There are interesting issues of drama and rhetoric posed by bringing these issues in, whether one tackles them on the perception level or the analysis and mapping stage.

* Comments were made that performing successfully on this system would require immense effort in terms of practicing and getting to know the responses and the reactions of the system in such an intimate manner that one could use it effectively for musical expression.  We agree of course.